Note

IS THE SEST.&K-BERGGREN EQUATION A GENERAL EXPRESSION OF KINETIC MODELS?

JIŘÍ MÁLEK * and JOSÉ M. CRIADO

Institute of Material Science, C.S.I.C. (Czechoslovakia) and University of Seville, 41 071 Seville (Spain)

(Received 27 July 1990)

TABLE 1 Kinetic models

Many works are concerned with the kinetic analysis of thermoanalytical (TA) data [l]. The main problem of empirical kinetics is usually associated with the formulation of the so-called kinetic model, i.e. the $f(\alpha)$ function in the kinetic equation

$$
d\alpha/dt = A \exp(-E/RT) f(\alpha)
$$
 (1)

The most frequently cited kinetic models are summarized in Table 1. The parameters A and E in eqn. (1) are characteristic constants that represent the kinetic process.

It is believed [1] that the Sestak-Berggren equation can be considered as a general expression for kinetic models. This equation undoubtedly includes, for example, the models $JMA(1) \equiv SB(0, 1)$ and $RO(n) \equiv SB(0, n)$ but it is not so evident for the D2, D3, D4 or JMA ($n \neq 1$) models. We have recently discussed this problem for constant rate thermal analysis [2] but as far as we

The symbols R2 and R3 are often used in the literature for $n = 1/2$ and $2/3$, respectively.

^{*} Permanent address: Joint Laboratory of Solid State Chemistry of the Czechoslovak Academy of Sciences and Institute of Chemical Technology, Name^{sti} legit 565, CS-532 10 **Pardubice, Czechoslovakia.**

Fig. 1. Typical TA peak and the corresponding integral curve.

know it has not previously been sufficiently analysed for classical TA techniques.

Figure 1 shows a typical TA curve and its corresponding integral form. There are several important points which can be found on these curves, i.e. the maximum of the TA peak (T_p, α_p) and one or two inflection points (T_i, α_i) where $i = 1, 2$. All these points can be calculated [3] by numerical

Fig. 2. The $\Delta x_i(x_p)$ dependence for D2, D3 and D4 models. The solid lines correspond to $i = 1$ and the dashed one to $i = 2$.

solution of eqn. (1). For practical reasons it is convenient to introduce a new variable, $x = E/RT$, called the *reduced activation energy*. We can now define the inflectional width of the first $(i = 1)$ and second $(i = 2)$ part of the TA peak by the parameter $\Delta x_i = |x_p - x_i|$. An interesting feature of this parameter is that it depends only on the value of x_p for each particular model, as shown in Fig. 2 for D2, D3 and D4 (diffusion) models, and it is invariant with respect to the kinetic parameters A and E. (The $\Delta x_2(x_p)$)

Fig. 3. The $\Delta x_i(n)$ plot for the SB(m, n) and JMA(n) models, $i = 1$ (a) and $i = 2$ (b). The solid lines correspond to $x_p = 10$ and the dashed ones to $x_p = 30$.

Fig. 4. The $\alpha_i(\alpha_n)$ diagram for $x_p > 10$. The solid lines correspond to the D2, D3, D4, R2, R3 and JMA(n) models, the area between the dotted ($x_p = \infty$) and dashed ($x_p = 10$) lines to the $SB(0, n)$ model, and the shaded area to the $SB(0.8, n)$ model.

function cannot be calculated for the D2 and D4 models as the second inflection point does not exist.)

It is noteworthy that $\Delta x_1 > \Delta x_2$ for the RO(*n*), JMA(*n*) and D3 models. Therefore, the corresponding TA peaks are asymmetric with respect to the reduced activation energy. This asymmetry is more significant for low values of x_p but it is not higher than 10% for $x_p > 30$.

For the models with a variable kinetic exponent, n , it is possible to plot the $\Delta x_i(n)$ dependence as shown in Fig. 3 for $x_p = 10$ (solid line) and $x_p > 30$ (dashed line). It can be seen that the Δx_i parameter for the $SB(m < 1, n)$ model is always lower than for the JMA($n < 1$). (It has been shown earlier [4] that physically acceptable values of the kinetic exponent, *m,* in the Sestak-Berggren equation should be lower than one.) On the other hand, the $\Delta x_i(n)$ curves cross at various points for the SB(m, n) and JMA $(n \geq 1)$ models.

Another interesting diagram is depicted in Fig. 4 where each kinetic model is represented by an $\alpha_i(\alpha_p)$ line as shown for the JMA(*n*) and diffusion models. The upper end of the $\alpha_i(\alpha_p)$ line corresponds to $x_p = \infty$, and the lower to $x_p = 10$. These two limits are marked for the SB(0, n) model by dashed and dotted lines, respectively. Hence, the range of acceptable α_i and α_p values for this model is confined to the enclosed area. The area also includes part of the $\alpha_i(\alpha_p)$ line of the JMA(*n*) model for $n \ge 1$ and the remaining part outside this area corresponds to $1 > n \ge 1/2$. Analogously, the $\alpha_i(\alpha_p)$ lines of the diffusion models are partially overlapped by the area for the following values of the kinetic exponent, $n: 0.25$ (D2), $2/3$ (D3) and 0.41 (D4) if $x_p \in (23, \infty)$. This overlap region is further reduced for $m > 0$ for the SB(0.8, n) model as shown in Fig. 4 by the shaded area.

If we compare, however, the inflectional width of the TA peaks corresponding to the SB (m, n) and diffusion models (see Figs. 2 and 3) we can see that the parameter Δx_i for the diffusion models is almost double. Therefore, it seems that diffusion kinetic models cannot be successfully substituted by the SB $(0, n)$ model for a fixed value of activation energy. On the other hand, as we have mentioned above, there are several intersections of $\Delta x_i(n)$ lines representing the SB(m, n) and JMA ($n \ge 1$) models (e.g. points a and b in Fig. 2) and thus the corresponding TA peaks have the same inflectional width. Nevertheless, the parameters α_i and α_p differ for both the $SB(m, n)$ and $JMA(n)$ models as shown in Fig. 4 by the filled and open circles, respectively.

Therefore, taking into account the results presented we can answer the question posed in the title of this note by concluding that the Sestak-Berggren kinetic equation cannot be considered as a general expression of the D2, D3, D4 and JMA($n \ne 1$) kinetic models for fixed values of activation energy.

ACKNOWLEDGEMENT

This work was supported in part by the Spanish Ministry of Education and Science.

REFERENCES

- **1 J. &st&, Thermophysical Properties of Solids, Their Measurement and Theoretical Analysis, Elsevier, Amsterdam, 1984.**
- **2 J.M. Criado, J. Mtiek and F.J. Gotor, Thermochim. Acta, 158 (1990) 205.**
- **3 J. Mtiek and J.M. Criado, Thermochim. Acta, 164 (1990) 199.**
- 4 J. Málek, J.M. Criado, J. Šesták and J. Militký, Thermochim. Acta, 153 (1989) 429.